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Abstract. In the Lagrange formulation of a classical constrained dynamics the properties 
of non-point transformations (i.e. those depending not only on coordinates but also on 
their time derivatives) which result in physically equivalent theories are studied as well as 
their analogues in the corresponding Hamilton dynamics. 

1. Introduction 

In this paper the properties of a certain class of non-point transformations (or 
equivalently, of non-point changes of variables), which depend not only on coordinates 
but also on their time derivatives in the Lagrange formulation of a classical dynamics, 
as well as their analogues in the corresponding Hamilton formulation, are studied. A 
good choice of variables is often a powerful tool in the understanding of different 
features of the phenomena under consideration. So changes of variables are extensively 
used when solving different problems for a given theory. For example, in chiral theories 
the transition to normal coordinates is very useful, and when studying properties of 
Goldstone modes in theories with a spontaneous symmetry breaking the substitution 
of the type cp = p exp (i6) is considered, and so on. Symmetry transformations of a 
Langrangian, inculding gauge and supergauge transformations, may be also treated as 
changes of variables. 

It is well known (see, for example, Goldstein 1957 or Gantmacher 1966) that for 
a point change of variables (of the type q’ =f i (q’ ) )  being performed both in the 
equations of motion and in the action for q, we obtain for q’ a theory which is physically 
equivalent to the original theory. To the point transformations in the Lagrange 
formalism there correspond certain canonical transformations in the Hamilton formal- 
ism. The situation differs when one performs a non-point transformation of the type 

Let us consider, for example, a non-constrained theory of variables q described by the 
Lagrangian L = L(q, 4). The equations of motion for q are second order with respect 
to the time derivatives. By substituting (1.1) into these equations one gets the third-order 
equations of motion for variables 4’. On the other hand, let us make the substitution 
(1.1) into the Lagrangian L and consider the result 
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as the Lagrangian which describes a theory of variables 4’. It is obvious that the 
equations of motion for q’ which correspond to the Lagrangian (1.2) are fourth order 
with respect to the time derivatives and, consequently, they cannot be equivalent both 
to the original second-order equations for q and to the third-order equations for q’ 
obtained by direct substitution. Hence, we can conclude that a non-point change of 
variables leads in general to a physically non-equivalent theory. Certainly, the theory 
of variables q’ with the Lagrangian (1.2) has a sector which is equivalent to the original 
theory of variables q. It consists of the extremals whose initial data are confined to 
the condition (1.1) and to its first and  second time derivatives (the second derivative 
q should be expressed in terms of q and q due  to the original equations of motion). 
However, when considered by itself, the theory (1.2) is non-equivalent to (is ‘broader’ 
than) the original theory. In terms of Gitman and  Tyutin (1986) the theory of variables 
q‘ with the Lagrangian L’ (1.2) is the gauge of the original theory of variables q with 
the Lagrangian L(q, 4 ) .  

The non-equivalence of the two theories for variables q and q‘ in the case of a 
non-point transformation is due  to the fact that in the Lagrangian L’ there appeared 
time derivatives of a higher order than those in the Lagrangian L. However, these 
higher derivatives may enter the Lagrangian L’ in a combination which is a total time 
derivative. Equations of motion for variables q’ in such a case will also be second 
order, and  one can suggest that the two theories, of variables q and q’, are physically 
equivalent. It is the aim of this paper to prove that this suggestion is true. 

So, we shall consider changes of variables of the form (1.1) which are restricted 
by the condition that the highest (the second) derivative in L’(q‘, q’, q ’ )  = LMf) 
should appear only in a combination which is a total time derivative. In addition, we 
shall confine ourselves to infinitesimal transformations. Let us note that when 
Lagrangian symmetries are considered, infinitesimal transformations are usually 
sufficient, and  their investigation is important in itself. 

The paper is organised as follows. In section 2 non-constrained theories are 
examined. It is shown that if variables q’ satisfy Lagrange equations corresponding 
to the Lagrangian L’ (1.2), then variables q which are connected with q’ by (1.1) 
satisfy Lagrange equations corresponding to the Lagrangian L (q ,  4 ) .  It is also estab- 
lished that the transformations (1.1) is one-to-one on real trajectories (i.e. for q(  t )  and 
q ’ ( t )  satisfying proper Lagrange equations). In the proof, a transition to the Hamilton 
formulation is used. It is shown, as a by-product, that if two Lagrangians L(q, q )  and 
L‘(q‘, 4 ’ )  are mutually connected, up to a total time derivative, by a transformation 
of the form (1.1) then the corresponding Hamilton formulations are connected by a 
canonical transformation. The complement is also true: if  two Hamilton theories are 
connected by a canonical transformation then corresponding Lagrangians are con- 
nected, up  to a total time derivative, by a certain, in general, non-point transformation. 
Thus, there exists a one-to-one correspondence between Lagrangian transformations, 
modulo a total time derivative, which are generated by a generally non-point change 
of variables, and canonical transformations of the corresponding Hamiltonian. In 
section 3 the consideration of section 2 is further generalised to theories with second- 
class constraints. Some additional restrictions are imposed on the change of variables 
(1.1). Namely, the number of primary as well as of all other constraints should be the 
same in the Hamilton formulation of the theory of variables q’ ( for  a more exact 
statement see section 3) .  In this case, too, the two theories of variables q and variables 
q’,  turn out to be physically equivalent and the transformation (1.1) is one-to-one on 
real trajectories. The Hamiltonians of the two theories are connected by a change of 
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variables p ,  q, A ( A  are Lagrange multipliers to the primary constraints), and in the 
sector of variables p ,  q this transformation is canonical (but it is dependent on A ) .  It 
is also shown that there exists a true canonical transformation of variables p and q 
which coincides with that mentioned above on the surface defined by the equations 
of primary constraints and by the equations A = A ( p ,  q ) ,  following from the Dirac 
method (Dirac 1964). This canonical transformation transfers the whole set of all the 
constraints of the theory of variables q into the whole set of all the constraints of the 
theory of variables 4'. 

It should be emphasised that the non-point transformation ( 1.1 ), which is one-to-one 
on real trajectories, is not of this sort for arbitrary trajectories, in contrast to the case 
of point transformations. As to the connection between Hamiltonians of the two 
theories, only the following properties of the transformation (1.1) are used in the proof 
the highest time derivative appears in L' only through a total time derivative, and the 
number of primary constraints is conserved. Therefore the correspondence established 
between the Hamiltonians is also valid for any degenerate theory. 

Finally, in section 4 the problem inverse to the problem of section 3 is considered: 
a change of variables is performed in the Hamiltonian formalism. It is shown that if 
the change obeys the following three conditions: (i)  in the p ,  q sector the change is 
canonical (dependent, perhaps, on A ) ,  (ii) the A remain Lagrange multipliers in the 
transformed action (there are no time derivatives of A ' ) ,  (iii) primary constraints of 
the new theory are independent of A ' ;  then the corresponding Lagrangians are con- 
nected, up to a total time derivative, by a generally non-point change of variables q. 

2. Non-point transformations in non-constrained dynamics 

Let us consider a non-constrained system, described by the Lagrangian without the 
higher derivatives 

Let us make an infinitesimal non-point change of variables 

Then we have for the Lagrangian L(q,  4 )  in the new variablest 

L = U q ,  4)  

qa  = q f a  + A " ( q ' ,  4') .  

q = { q a } , a = l , 2  , . . . ,  n. 

We shall assume that the equations of motion for variables q' are second order with 
respect to the time derivatives. As was noted in section 1, this condition is necessary 
for the physical equivalence of two non-constrained theories connected by the change 
(2.1). It follows from the preservation of the order of the equations of motion for q' 
that q' appears in (2.2) as a total time derivative term. It means, in its turn, that there 
exists the function F ( q ,  q )  such that 

aF aL aAb - 
aq" a q b  ada'  (2.3) 

t Here and throughout the text, summation over repeated indices is understood. The indices are omitted 
in those cases when no misunderstanding can ensue. Remember that all the equalities are true up to the 
second-order terms in A. 
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Equations (2.3) can be solved. Let us introduce the notation 

where cj(p, q )  is the solution of the equations 

with respect to 4 (note that A(q, 4 )  = &(aL/acj, q ) ,  and so on). Then the solution of 
equations (2.3) can be represented in the form 

where cp is an arbitrary function of p and q. The relation (2.2) may be rewritten as 

The two theories, whose Lagrangians differ in the total time derivative, are physically 
equivalent (Gitman and Tyutin 1986); in particular, their equations of motion coincide. 
Therefore, we shall use the Lagrangian L'(q ' ,  4 ' )  for the theory of variables 4'. A 
question arises regarding whether the theories ( q ;  L) and ( 4 ' ;  L ' )  are physically 
equivalent. As was noted in section 1, we shall answer this question in the affirmative. 

Let us construct the Hamiltonians for the theories with the Lagrangians L(q,  4 )  
and L'(q',  4 ' )  

H ( P ,  9 )  = ( P 4  - L(q ,  4 ) ) l p = 3 L ( q . q ) , d q  

H ' ( p ' ,  4 ' )  = ( P ' 4 '  - L'(q', 4 ' ) ) l p ' = d L ' ( q ' , q ' ) , a q ' .  

Using the relation AH = -AL, which follows from the properties of the Legendre 
transformation, and (2.5), we obtain 

(2.6) W P ' ,  4 ' )  = W P ' ,  q ' ) + { H ( p ' ,  9 9 ,  d P ' ,  9 ' ) )  

Thus, if the non-constrained Lagrangians L and L' are connected by the change of 
variables (2.1), so that relation (2.4) is fulfilled, than the Hamilton formulations, of 
these theories are connected by the canonical transformation, and the transformation 
of the coordinates in the Lagrange and Hamilton formulations (2.1) and (2.8) coincide 
(after the identification p' = a L ' / a q '  is made). 

The reverse is also true. If  the Hamilton formulations of the non-constrained 
systems are connected by the canonical transformation, then the corresponding 
Lagrange formulations are connected by a change of variables of the type (2.1) (so 
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that the highest time derivative appears only as a total time derivative). Indeed, let 
the Hamiltonian H ( p ,  q )  be given. Let us construct the corresponding Lagrangian 

L(q,  4 ) = ( p c i - H ( p ,  d ) l q = , 3 H , i I p .  

Now let us make canonical transformation (2.7) and  (2.8). In terms of the variables 
p ' ,  q' the theory is described by the Hamiltonian 

H ' ( p ' ,  9 ' )  = H ( p ,  4 )  = W p ' ,  q ' ) + A H ( p ' ,  4 )  
A H ( p ' ,  4 ' )  =IH(p', q ' ) ,  c p b ' ,  9 ' ) ) .  

The corresponding Lagrangian is 

L' (q ' ,  q ' ) = ( p ' q ' - H ' ( p ' ,  q ' ) ) l s l = d H l , i i p l = L ( q ' ,  q ' ) + A L .  

Using the property of the Legendre transformation AL = - A H  we obtain 

which proves the reverse statement. 
To prove that the theories ( q ;  L )  and ( q ' ;  L ' )  are physically equivalent we shall 

use the one-to-one correspondence between real trajectories in the Lagrangian and 
Hamiltonian formalisms, and  the one-to-one correspondence between real trajectories 
of the two Hamilton theories connected by the canonical transformation. Let the sign 

denote one-to-one correspondence between real trajectories. Then we can write 

( 9 ;  L ) ( J ( p ,  4 ;  H ) - ( p ' ,  9 ' ;  f f ' ) - (q ' ;  L ' ) .  

( 4 ;  L)-(q'; L ' ) .  

Hence it follows that 

What are the transformations realising the correspondence between real trajectories 
q and q'? Let (p ' ,  q ' )  be a real trajectory in the theory ( p ' ,  q ' ;  HI), where q' is a 
real trajectory of the theory ( 4 ' ;  L ' ) .  Then p and q, connected with p'  and q' by 
relations (2.7) and  (2.8), are real trajectories in the theory ( p ,  q ;  H ) ,  and q is a real 
trajectory for the theory ( q ;  L ) .  But on real trajectories (2.8) coincides with (2.1). 
hence, the change (2.1) transforms the real trajectory q' into the real trajectory q. The 
reverse transformation (on real trajectories) can be constructed in the following way: 
the change (2.7), (2.8) should be converted, and then, substituting aL/aq  for the 
canonical momenta p ,  we shall obtain the change q' = q ' ( q ,  4) .  

3. Non-point transformations in constrained dynamics 

Here we shall consider non-point transformations for constrained theories. Let us 
confine ourselves to the theories with only second-class constraints in the Hamilton 
formulation. As to the change (2.1), we shall assume again that the highest time 
derivative enters the transformed Lagrangian as a total time derivative combination. 
We shall also impose additional restrictions on the properties of the change (2.1). 
Namely, we shall assume that (i) the ranks of the Hessian for two Lagrangians L( q, q ) ,  
L'(q', 4 ' )  are equal to each other, (ii) the total numbers of constraints in L'(q' ,  4 ' )  
and L(q,  q )  coincide one with another, (iii) the constraints and the Lagrange multipliers 
of the transformed theory are first-order perturbations with respect to A" of the 
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corresponding expressions of the starting theory. We shall show below that these 
conditions are sufficient for the physical equivalence of the two theories. But we do 
not know at present whether they are necessary. However, it is not difficult to give 
examples of the transformations in which some of the above-mentioned conditions 
are broken, and the transformed theory requires a greater amount of the initial data 
for the Cauchy problem, in comparison with the starting theory. 

So, let us consider the constrained theory described by the Lagrangian L( q, 4). Let 
us divide the variables into two groups q' = ( x n ,  XI), p .  = (re, ni )  so that the system 
of equations 

aL n .  =- 
I ax' 

allows us to solve the velocities X I  in terms of the coordinates qm,  to momenta Hi and 
the Lagrange multipliers A a = xi." 

X '  = V ' ( q ,  H, A ) .  

Here 

Further, we make the change of the variables (2.1) in the Lagrangian L(q,  4). So, 
equation (2.3), which ensures the absence of higher time derivatives in L', can be 
explicitly solved even in constrained theories. Namely, if we introduce the functions 

A" (q ,  n, A = A" (q,4)I i=~, x = v F ( q , n , A ) = F ( q ,  q ) l i = ~ , x = v  

then 

where cp is an arbitrary function of q and ll (and does not depend on A ) ,  A" are 
arbitrary functions of q, n, A. Of course, the functions cp and io must also ensure the 
correspondence between the constraints of the starting and the transformed theories. 

For the Lagrangian L' we obtain 

L'(q',  4') = L(q',  q ' ) + A L ( q ' ,  4') 

It is convenient to use the Hamilton formalism to prove the physical equivalence of 
two theories with the Lagrangians L(q ,  q )  and L'(q', 4'). Let us construct the 
Hamiltonian H"'(p ,  q, A )  (Dirac 1964) for the theory with the Lagrangian L(q,  q )  as 

H " ' ( P 7 q , A ) = ( P 4 . - L ( q ,  4 ) ) I i = ~ . x = v ' H ( n ,  q)+Ao4kf'(P, 4 )  
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where 4;' are primary constraints. The Hamiltonian H""(p' ,  q', A ' )  for the theory 
with the Lagrangian L'(q',  q ' )  is constructed in an analogous way. Its structure is 
defined by equations (3 .1)  with the replacement of all the non-primed quantities by 
primed ones (we assume here that the numbers of constraints 4"' and 4 '" )  are equal). 

Using the relation between L and L' we find 

H'" ' (p ' ,q ' ,A')= H ' " ( p , q , A )  

p a  =pL+t~ j l ,  W ( ' ' ( P ' ,  q',A')}Gpjl++Vpa (3.2) 
q a  = q " + { q " ,  W")(p' ,  q', A ' ) } = q " ' + V :  

A "  = A la + { H ' " ' ( p ' ,  q', A I ) ,  &"(p' ,  q', A I ) }  = A lo + V: 

(3 .3 )  

(3.4) 

where 

W"'(p,  4, h ) = p a h a - F = c p ( I I ,  q ) + 4 ; ' & " ( p ,  q , A ) .  

Note that Aa and V: are, in fact, identical transformations; namely, the following 
relation holds: 

V:lA = y ,  p = d L  + q  = Aa. (3 .5)  

If we consider in the Lagrangian formalism, the change in momenta under the transfor- 
mations (2.1) is the following: 

We can check that the relations 

( A p a - V p a ) I , i = , , p = , L  n y  

are fulfilled. 
Thus, we see that when two Lagrangians are connected by the non-point change 

of the variables, the corresponding Hamiltonians are also connected by some variable 
change which is canonical (but dependent on the parameters A " )  in the p ,  q sector. 
Note here that this fact is true for theories both with second-class constraints and with 
first-class ones. Indeed, in proving it we have used only the coicidence of the primary 
constraints numbers in the theories (4; L )  and (4'; L') .  

It should be noted, however, that the change of variables ( p ,  q, A ) -f (p ' ,  q', A i )  
which transforms the Hamilton action S(p ,  q, A ) ,  corresponding to the Lagrangian 
L(q ,  q ) ,  into the Hamilton action S ' (p ' ,  q', A ' ) ,  corresponding to the Lagrangian 
L'(q' ,  q ' ) ,  differs from (3 .4)  in the A sector. Namely, consider the Hamilton action 
S(P, 4, A 1 

S ( p , q , A ) =  d t (pq -H ' ' ' ( p ,q ,A) )  I 
and make the change of variables in it 

p = p ' + v ,  q = q' +v,  A = A ' + ~ A .  
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We have 

Hence it is clear that 6A should be taken in the form 

(3.7) 

Thus, the change of variables, connecting two theories in the Hamiltonian formalism, 
is also a non-point one (we can now show that after the identification A = 1, A '  = X I ,  
p = aL/aq that the transformation (3.7) coincides with the transformation connecting 
d x / d t  and  d x ' l d t ) .  For non-constrained theories this transformation in the Hamil- 
tonian formalism was a point transformation which, in fact, enabled us to prove the 
physical equivalence of the two theories. 

We shall now construct a new point (strictly canonical in the p ,  q sector) trans- 
formation which, however, coincides with (3.21, (3.3), (3.7) for the real trajectories. 

As all constraints in the theories considered here are second class, there exist 
equations of motion expressing A ( A ' )  in terms of II, q(p ' ,  q ' )  

A "  = (L"(l-I, q )  
Represent W"' in the form 

W"'(P,q ,A)= wb"(p,q)+(A"-(L"(n,  q ) ) ~ $ ' ( p , q ) K P U ( p , q , A ) ~  W;'+AW(''  
where 

A'" = $""(17', 9') = $"(II', q')+A$"(II', 4 ' ) .  

Wh"(P, 4 )  = cp(l-I, q)+$b''(p, q W ( I - r ,  q, $(l-I, 4 ) ) .  
Consider the action 

d t (p 'q ' -H ' ' " (p ' , q ' ,A ' ) )  

and  make the transformation 

4' = 4 ' - { 4 ,  Wb'j}Ip.q+5,q P' = i - { p ,  w b " ) l P , q + ~ , ~  
A'" = i ~ ' - c ; : ( ~ , 4 , i ) - { ( h P - ( L ( L p ) ~ n p ,  H " ' } l P , 4 , h - f i , + , ~  

in it. 
Then we have 

S =  d t ( i i - H " ' ( $ ,  i , i ) - A ( i ,  4,K)). i 
The equations of motion have the form 

(3.9) 



Non-point transformations in constrained theories 49 

As the change ( p ' ,  q', A I )  + (5, 4, x) is a point transformation, these sets either satisfy 
or do not satisfy the corresponding equations of motion at once. Equations of motion 
for (5, 4, x) can be obtained by substitution of the transformations (3.8) immediately 
in the equations of motion for ( p ' ,  q', A ' ). Consequently, these two sets of equations 
have the same number of generalised constraints (by generalised constraints we mean 
a set of ordinary constraints and equations A = $(n, 4)). That is why the same sets 
of initial data are necessary for both systems. Just the same set of initial data is required 
also for equations of motion of variables ( p ,  q, A ) .  These equations coincide with (3.9) 
when A = 0. With the given initial data the solution of (3.9) is unique. But we know 
one solution. It is the solution of (3.9) when A = 0 because A is quadratic with respect 
to such equations and the total time derivative of A on these equations becomes zero. 
So the equations of motion for (5 ,  4, x) and ( p ,  q, A )  are, in fact, equivalent. 

Consider the transformation (3.8) in more detail. The reverse transformation has 
the form 

4 =  4' + {a  W b l ) ) l p , q + p ' , q '  

i = p ' + { p ,  wbl))lp,q+p',q' (3.10) 

X = A I + V, ( p I, I ,  A I + {(A - +) K ,  H' 4, A + p l ,  41, A I  . 
It is easy to see that on the real trajectories (3.10) coincides with (3.2), (3.3), (3.7) 
which, in turn, coincide with (2.1) in the p ,  q sector (see (3.5) and (3.6)). The 
transformation q' = q ' ( q )  can be taken in the form (3.3) (by substituting p = aL/ag, 
A = x). On the real trajectories it is inverse to (2.1). Thus we see that for the dynamics 
with the second-class constraints the change (2.1) (with the additional reastrictions 
stated above) connects physically equivalent theories and is also invertible on the real 
trajectories. 

4. Non-point transformations in the constrained Hamiltonian formalism 

Here we shall solve a problem which is inverse to that of section 3 .  We shall try to 
find a correspondence to the Hamilton variables transformation in the Lagrangian 
formalism. 

Consider a theory with constraints described in the Hamiltonain formalism by the 
action 

S ( p ,  q , A ) =  d t ( p q - H " ' ( p , q , A ) )  / 
where the Hamiltonian H"' 

H " ' ( P ,  q, A ) =  H ( n ,  q)+Arb" ' (p ,  9 )  

is constructed with regard to the Lagrangian L(q, 4 )  (see (3.1)), and r $ ( ' ) =  r-f(II, q )  
are the primary constraints. 

Let us make in S (  p ,  q, A )  the change of variables which is canonical in the p ,  q 
sector but dependent, perhaps, on A (the generating function W"' can depend on A )  
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The transformed action has the form (we omit the total time derivative) 

p ' 4  ' - H" '( p (  p ', 
(4.2) 

The first restriction on the change (4.1) is the absence of the time derivative of A '  in 
(4.2) (i.e. we demand that A '  be the Lagrange multipliers, as before). This condition 
yields 

where SIA is independent on the time derivative. The second restriction is connected 
with the following assumption: 

where K !  is a non-singular matrix, and the functions 4:(I1(p', 4') are independent of 
A.  The demand of (4.1) and the first restriction correspond to the requirement that 
the higher derivative be absent in L' for the Lagrangian formalism. The second 
requirement secures the preservation of the primary constraints number. Without loss 
of generality one can consider that 

q p ( p ' ,  4 ' )  = 7r: -fL(rI', 4 ' ) .  

~ ' ( l ) ( p ' ,  q', A ' ) =  ~ " ~ ( p ,  4, A ) - s ~ A " ~ : ( " ( ~ ' ,  4') 

It is easy to show that 

= H ' ( n ' ,  q ' ) + 4 : ( ' ) ( p 1 ,  q ' ) ( K " ( p ' ,  q', A ' ) + A ' " )  

and on real trajectories A '" = x'". 
Let us consider the Lagrangian L' (q ' ,  4 ' )  corresponding to the Hamiltonian H"": 

L'(q',  4 ' )  = ( p ' 4 ' - H ' ' " ( p ' ,  q', A ' ) ) l q ' = d H ~ ~ 2 ~  l a p ' ,  &""=o 

= L( q', 4 ' )  + AL( q', 4 ' ) .  
Using the relation A L =  -AH(" we obtain 

or, finally, 
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Thus, we have shown that if two Hamilton theories are connected by the above- 
mentioned change of variables, then the corresponding Lagrangians are also connected 
by the change of variables, and that the highest time derivative appears only in the 
form of the total derivative. 

Note, finally, that the given proof is true for considered Hamilton theories both 
with second-class constraints and with first-class ones. 

5. Conclusions 

We have studied the properties of non-point transformations for constrained theories 
in the Lagrangian and Hamiltonian formalisms. It was shown that the non-point 
transformation q + q(q' ,  4 ' )  for the constrained Lagrange theory, also satisfying addi- 
tional restrictions pointed out above, connects two physically equivalent theories and 
is reversible on real trajectories. The Hamiltonians of these two theories are also 
connected by the change p ,  q, A + p ' ,  q', A '  which, in the p,  q sector, is canonical (but 
dependent on A )  and in the q sector coincides with the starting one (see (3.5)). Besides, 
there exists a transformation which is strictly canonical in the canonical variables 
sector, and has the effect of transforming real trajectories of the starting theory into 
those of the transformed theory. It is reversible on real trajectories, coincides in the 
q sector with the coordinate change in the Lagrange theory and is self-consistent in 
the sense that on real trajectories the transformation of the Lagrange multipliers A "  
coincides with the transformation of velocities dx" 1 dt. 

The results given in section 3 enable one to state the following important fact. Let 
us consider the total set of constraints 4 m ( p ,  q )  of the theory (p ,  q ;  H"')  and make 
the canonical change (3.10) in them. As this change transforms real trajectories into 
real ones, we obtain that the functions cpm(p' ) = & , ( p ( p ' ,  q ' ) ,  q ( p I ,  9 ' ) )  become 

depend on ql ,  p' and A'. Hence, they are constraints of the theory (p' ,  4 ' ;  H""). For 
the non-singular change, the number of independent functions cp, is equal to the number 
of independent functions d m ,  amd then cp, is the total set of constraints 4;  of the 
theory (p' ,  4 ' ;  H"")  

Note that the analogue of this relation for primary constraints is not fulfilled: the 
change (3.10) transforms primary constraints of the theory ( p ,  q ;  H " ) ) ,  in the general 
case, to a combination of primary and secondary constraints of the theory 

zero on real trajectories of the theory ( p ' ,  4 ' ;  $:I ). The functions cpm(p', 4 ' )  do not 

4!n(~ ' ,  4 ' )  = 4 m ( P ,  q ) t p = p ( p ~ , q ~ , , q = q ( p ~ , q ~ , ~  

(p ' ,  4 ' ;  H"") .  
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